Abstract

The development of versatile nanotheranostic agents has received increasing interest in cancer treatment. Herein, in this study, we rationally designed and prepared a novel flowerlike multifunctional cascade nanoreactor, BSA-GOx@MnO2@FePt (BGMFP), by integrating glucose oxidase (GOx), manganese dioxide (MnO2) and FePt for synergetic cancer treatment with satisfying therapeutic efficiency. In an acidic environment, intratumoral H2O2 could be decomposed to O2 to accelerate the consumption of glucose catalyzed by GOx to induce cancer starvation. Moreover, the accumulation of gluconic acid and H2O2 generated along with the consumption of glucose would in turn promote the catalytic efficiency of MnO2 and boost O2 evolution, which could enhance the efficiency of starvation therapy. Moreover, FePt as an excellent Fenton agent could simultaneously convert H2O2 to the toxic hydroxyl radical (˙OH), subsequently resulting in amplified intracellular oxidative stress and cell apoptosis. Therefore, BGMFP could catalyze a cascade of intracellular biochemical reactions and optimize the unique properties of MnO2, GOx and FePt via mutual promotion of each other to realize O2 supply, chemodynamic therapy (CDT) and starvation therapy. The anticancer results in vitro and in vivo demonstrated that BGMFP possessed remarkable tumor inhibition capacity through enhancing the starvation therapy and CDT. It is appreciated that BGMFP could be a promising platform for synergetic cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call