Abstract

A continuous flow-through chamber for the in situ measurement of primary production in macrophytic algae (as exemplified by Ulva lactuca) is described. Rapid mixing occurred within the chamber independent of flow rate or amount of algal tissue, so that the “complete-mix reactor” model of sanitary engineering was closely approximated. Field experiments with the apparatus revealed a rapid response to short-term variations in production rate as well as a close correlation between production and changing light levels. The flowthrough apparatus was compared to a closed system (the traditional bell jar approach); when the water in the latter was mixed, the two methods gave similar results for incubations not longer than several hours. However, during longer incubations, the productivity in the static system was sometimes depressed, possibly due to nutrient depletion or to abnormally high levels of oxygen. Thus, the flow-through system permits reliable measurements of macroalgal production for periods of 12 h or longer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.