Abstract
Just as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß–Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauß–Newton flow equations. We highlight the advantages of the Gauß–Newton flow and the Gauß–Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg–Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauß–Newton flow, which is linked to Krylov–Gauß–Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.