Abstract

We develop a flow path model for the optimization of a regional water distribution system. The model simultaneously describes a water distribution system in two parts: (1) the water delivery relationship between suppliers and receivers and (2) the physical water delivery network. In the first part, the model considers waters from different suppliers as multiple commodities. This helps the model clearly describe water deliveries by identifying the relationship between suppliers and receivers. The physical part characterizes a physical water distribution network by all possible flow paths. The flow path model can be used to optimize not only the suppliers to each receiver but also their associated flow paths for supplying water. This characteristic leads to the optimum solution that contains the optimal scheduling results and detailed information concerning water distribution in the physical system. That is, the water rights owner, water quantity, water location, and associated flow path of each delivery action are represented explicitly in the results rather than merely as an optimized total flow quantity in each arc of a distribution network. We first verify the proposed methodology on a hypothetical water distribution system. Then we apply the methodology to the water distribution system associated with the Tou‐Qian River basin in northern Taiwan. The results show that the flow path model can be used to optimize the quantity of each water delivery, the associated flow path, and the water trade and transfer strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call