Abstract

We present a helicopter flight dynamics nonlinear model for a flybarless, articulated, pitch–lag–flap (P–L–F) main rotor (MR) with rigid blades, particularly suited for small-scale unmanned aerial vehicles (UAVs). The model incorporates the MR, tail rotor (TR), fuselage, and tails. This model is further applicable for high bandwidth control specifications and is valid for a range of flight conditions, including the vortex-ring-state (VRS) and autorotation. Additionally, the paper reviews all assumptions made in deriving the model, i.e., structural, aerodynamics, and dynamical simplifications. Simulation results show that this nonlinear model is in good agreement with an equivalent flightlab model, for both static (trim) and dynamic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.