Abstract

This paper describes the development of the fast tool servo (FTS) in detail and categorizes existing FTSs according to different principles. The characteristics and differences of these FTSs have been analyzed. A flexure-based long-stroke FTS system for diamond turning is presented with displacement range of 1 mm and bandwidths of 10 Hz. The vertical jump is about 0.045 μm, and the full stroke tracking error is less than 0.15%. A voice coil motor and a piezoelectric actuator are used as the driving elements, and two flexure hinges are developed as the guide mechanisms. The FTS utilizes a linear encoder and a capacitive sensor to measure the displacement of the tool for closed-loop control. The electromechanical design of the FTS and its motion analysis are described. Experimental tests have been carried out to verify the performance of the FTS system. This long-stroke FTS has the advantage of easy machining, high resonance frequency, and error compensation in y-axis direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.