Abstract

This paper presents a self-sensory robot arm to two basic sensing problems in control of flexible manipulators: detection of the position and orientation variations due to structural deformation and detection of the contact force of end-effector when manipulator interacts with its environment. Taking advantage of structural flexibility, a flexible robot arm with strain gauges distributed on it acts as a sensing unit. The position and orientation of flexible arm are expressed as a function of curvature of the arm. An interpolation technique gives this continuous curvature function from a finite set of measurements made with strain gauges. A relation between strain measurements and endpoint force of flexible arm is developed and the contact force of end-effector is then determined using a force propagation algorithm. The proposed technique and algorithm were implemented and evaluated in a laboratorial flexible arm. Experimental validations using a vision system and two force sensors have shown that the self-sensory flexible arm can provide accurate endpoint position and force in both static and dynamic loading situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call