Abstract

In this work, a wave-shaped piezoelectric composite (WSPC) made of fine β-phase vinylidene fluoride trifluoroethylene copolymer (P(VDF-TrFE)) polymer and high-elastic FeSiB amorphous alloy (metglas) ribbon has been successfully fabricated for wearable device applications. X-ray diffraction and the Fourier Transform Infrared Spectrum studies reveal P(VDF-TrFE) exhibiting the fine β-phase. Both theoretical analysis and experimental results show that unique wave-shaped structure enhances the electromechanical coupling significantly, because of the combination piezoelectric effects of d33 and d31 modes in P(VDF-TrFE) polymer, as well as the enhanced effective piezoelectric coefficient caused by the pre-stretch in P(VDF-TrFE) film. Two application examples of WSPC, (i) mechanical force sensor or energy harvester, and (ii) the medical blood-pressure pulse sensor, have been investigated, which show that the WSPC is a promising candidate for future wearable device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call