Abstract

AbstractHigh‐performance flexible and transparent chemical sensors are key to achieving wearable electronics. Graphene with high transmittance and electrical properties is a suitable material for flexible and transparent chemical sensors. However, graphene has low detectivity to chemical substances. Here, we report hybrid chemical sensors fabricated by introducing a highly flat and smooth metal–organic framework (MOF) on graphene. The graphene chemical sensors functionalized with MOF on SiO2/Si wafer exhibit 22 times higher sensitivity of 6.07 μA ppm−1 in detecting ethanol than that of pristine graphene transistors of 0.28 μA ppm−1 and a low detection limit of 1 ppm. Furthermore, a flexible transparent 7 × 7 chemical sensor array exhibits great driving stability after the bending cycles of 105 at a bending radius of 1.0 mm and shows sensitivity of 0.11 μA ppm−1. Our findings demonstrate an efficient way to improve the chemical sensing ability of graphene for application in wearable chemical sensors.image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.