Abstract

Investigations have been focused on improving the precision of real-time GNSS satellite clock corrections. There is a little literature analyzing the characteristics and impacts of the clock datum and initial clock biases (ICBs). We illustrated the clock anomaly caused by the two factors and proposed a new strategy flexible for global and regional clock estimation based on the mixed-difference observation method. First, we analyzed the clock datum of the final and real-time clocks. Results show that the variation in the clock datum can be up to 500 ns per day depending on the datum definition strategy. The variations can lead to large inconsistencies in the datum for the re-convergence of estimated satellite clocks when using the mixed-difference clock estimation method. To resolve the problem, we propose a new method for the epoch-by-epoch datum definition, which can screen out any outliers in broadcast ephemeris in real time, and particularly suitable for the real-time clock estimation. Second, we analyzed ICB jumps in real-time clock corrections, which can degrade the accuracy of precise point positioning. We propose a short-term prediction of clock corrections for bridging ICBs with the precision better than 0.1 ns for stable satellite clocks within a gap of 1–3 min. The prediction can decrease the magnitude of ICB jumps and thus improve a user solution. Considering the prediction of clocks, high precision cannot be guaranteed for all conditions, we thus recommend broadcasting a discontinuity flag for real-time service, so the re-convergence of ICB can be identified by users for resetting carrier-phase ambiguities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call