Abstract
Mixed spatial autoregressive (SAR) models with numerical covariates have been well studied. However, as non-numerical data, such as functional data and compositional data, receive substantial amounts of attention and are applied to economics, medicine and meteorology, it becomes necessary to develop flexible SAR models with multiple data types. In this article, we integrate three types of covariates, functional, compositional and numerical, in an SAR model. The new model has the merits of classical functional linear models and compositional linear models with scalar responses. Moreover, we develop an estimation method for the proposed model, which is based on functional principal component analysis (FPCA), the isometric logratio (ilr) transformation and the maximum likelihood estimation (MLE) method. Monte Carlo experiments demonstrate the effectiveness of the estimators. A real dataset is also used to illustrate the utility of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.