Abstract

Autonomous agents (AAs) are designed to embody the natural intelligence by incorporating cognitive mechanisms that are applied to evaluate stimuli from an emotional perspective. Computational models of emotions (CMEs) implement mechanisms of human information processing in order to provide AAs for a capability to assign emotional values to perceived stimuli and implement emotion-driven behaviors. However, a major challenge in the design of CMEs is how cognitive information is projected from the architecture of AAs. This article presents a cognitive model for CMEs based on appraisal theory aimed at modeling AAs' interactions between cognitive and affective processes. The proposed scheme explains the influence of AAs' cognition on emotions by fuzzy membership functions associated to appraisal dimensions. The computational simulation is designed in the context of an integrative framework to facilitate the development of CMEs, which are capable of interacting with cognitive components of AAs. This article presents a case study and experiment that demonstrate the functionality of the proposed models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.