Abstract

The goal of this research is to develop a novel second-generation-based biogas supply chain network design (BG-SCND) model that takes into account the triple bottom line approach. Biogas is a promising renewable energy source that can be obtained from a variety of easily accessible second-generation wastes, including animal manure, municipal waste, and agricultural leftovers. Integrated optimization of the biogas generation system is essential for a speedy and environmentally friendly transition to sustainable biodiesel production. The dynamic environment of the energy market significantly impairs the decisions of the BG-SCND model; therefore, a hybrid solution approach using flexible programming and possibilistic programming is suggested. To verify the suggested model and approach for solving the problem, a thorough computational analysis of a case study is conducted. The case study findings demonstrate that considerable investment is necessary to attain social and environmental well-being goals and safeguard decisions against epistemic uncertainty. Policymakers involved in the planning of biogas production and distribution projects may find the proposed approach useful.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call