Abstract

Designing a high capacity and long cycle life MnO-based composite material for lithium ion batteries (LIBs) is still a great challenge because of the intrinsically low electrical conductivity and dramatic volume variations during lithiation/delithiation. In this paper, the MnO nanoparticles (MnO NPs) are recombined with multi-walled carbon nanotubes (MWCNTs) and reduced graphene oxide (r-GO) to rationally construct a novel MnO NPs@MWCNTs/r-GO multilayer sandwich structure via electrostatic interaction self-assembly and vacuum filtration processes. As a result, the MnO NPs are closely attracted in the conductive MWCNTs network, and the MWCNTs adsorbed on the surface of MnO NPs can be served as a soft and flexible carbon coating layer to self-adapt the huge volume expansion. For another, the r-GO between two MnO NPs@MWCNTs layers is the cause to form a free-standing paper, enhancing the transverse conductivity of the whole electrode simultaneously. These features will contribute to achieve excellent cycling stability and improved rate capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.