Abstract

Native ion mobility (IM) mass spectrometry (MS) is used to probe the size, shape, and assembly of biomolecular complexes. IM-IM-MS can increase the amount of information available in structural studies by isolating subpopulations of structures for further analysis. Previously, IM-IM-MS has been implemented using the Structures for Lossless Ion Manipulations (SLIM) architecture to probe the structural stability of gas-phase protein ions. Here, a new multidimensional IM instrument constructed from SLIM devices is characterized using multiple operational modes. In this new design, modular devices are used to perform all ion manipulations, including initial accumulation, injection, separation, selection, and trapping. Using single-dimension IM, collision cross section (Ω) values are determined for a set of native-like ions. These Ω values are within 3% of those reported previously based on measurements using RF-confining drift cells. Tandem IM experiments are performed on a sample of ubiquitin ions that contains both compact and partially unfolded structures, demonstrating that this platform can isolate subpopulations of structures. Finally, additional modes of analysis, including multiplexed IM and inverse IM, are demonstrated using this platform. The ability of this platform to quickly switch between different modes of IM analysis makes it a highly flexible tool for studying protein structures and dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call