Abstract

A common design in family-based association studies consists of siblings without parents. Several methods have been proposed for analysis of sibship data, but they mostly do not allow for missing data, such as haplotype phase or untyped markers. On the other hand, general methods for nuclear families with missing data are computationally intensive when applied to sibships, since every family has missing parents that could have many possible genotypes. We propose a computationally efficient model for sibships by conditioning on the sets of alleles transmitted into the sibship by each parent. This means that the likelihood can be written only in terms of transmitted alleles and we do not have to sum over all possible untransmitted alleles when they cannot be deduced from the siblings. The model naturally accommodates missing data and admits standard theory of estimation, testing, and inclusion of covariates. Our model is quite robust to population stratification and can test for association in the presence of linkage. We show that our model has similar power to FBAT for single marker analysis and improved power for haplotype analysis. Compared to summing over all possible untransmitted alleles, we achieve similar power with considerable reductions in computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.