Abstract

Action recognition is a very effective method of computer vision areas. In the last few years, there has been a growing interest in Deep learning networks as the Long Short–Term Memory (LSTM) architectures due to their efficiency in long-term time sequence processing. In the light of these recent events in deep neural networks, there is now considerable concern about the development of an accurate action recognition approach with low complexity. This paper aims to introduce a method for learning depth activity videos based on the LSTM and the classification fusion. The first step consists in extracting compact depth video features. We start with the calculation of Depth Motion Maps (DMM) from each sequence. Then we encode and concatenate contour and texture DMM characteristics using the histogram-of-oriented-gradient and local-binary-patterns descriptors. The second step is the depth video classification based on the naive Bayes fusion approach. Training three classifiers, which are the collaborative representation classifier, the kernel-based extreme learning machine and the LSTM, is done separately to get classification scores. Finally, we fuse the classification score outputs of all classifiers with the naive Bayesian method to get a final predicted label. Our proposed method achieves a significant improvement in the recognition rate compared to previous work that has used Kinect v2 and UTD-MHAD human action datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call