Abstract
In this paper, we mainly focus on the development and study of a new global GCRO-DR method that allows both the flexible preconditioning and the subspace recycling for sequences of shifted linear systems. The novel method presented here has two main advantages: firstly, it does not require the right-hand sides to be related, and, secondly, it can also be compatible with the general preconditioning. Meanwhile, we apply the new algorithm to solve the general coupled matrix equations. Moreover, by performing an error analysis, we deduce that a much looser tolerance can be applied to save computation by limiting the flexible preconditioned work without sacrificing the closeness of the computed and the true residuals. Finally, numerical experiments demonstrate that the proposed method illustrated can be more competitive than some other global GMRES-type methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.