Abstract

As wireless sensor networks (WSNs) often provide incorrect and outdated information about the events in a monitored environment, quality of information (QoI) assessment is invaluable for users to manage and use the information in particular applications. In this paper, we propose a flexible framework to dynamically assess the QoI in different WSN applications, with focus on accuracy and timeliness. Our framework is constructed on the infrastructure of an information aggregation procedure under some assumptions about the network. Based on information fusion theory, two processing models are adopted to assess the accuracy of low-level measurement data and high-level decision information without the need for Ground Truth (GT). Meanwhile, our framework generally exploits two respective models according to the specific category of the information timeliness in different delay-sensitive applications. To quantify the timeliness, we utilize a practical measurement method by means of timestamp to determine the information acquisition time. The framework is evaluated by simulations, including accuracy assessment in two environmental monitoring application scenarios, and timeliness assessment in two delay-sensitive application scenarios. The simulation results show that our framework is effective and flexible for quantitative assessment of the QoI in different WSN applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.