Abstract
The aim of this paper is not only to propose a new extreme distribution, but also to show that the new extreme model can be used as an alternative to well-known distributions in the literature to model various kinds of datasets in different fields. Several of its statistical properties are explored. It is found that the new extreme model can be utilized for modeling both asymmetric and symmetric datasets, which suffer from over- and under-dispersed phenomena. Moreover, the hazard rate function can be constant, increasing, increasing–constant, or unimodal shaped. The maximum likelihood method is used to estimate the model parameters based on complete and censored samples. Finally, a significant amount of simulations was conducted along with real data applications to illustrate the use of the new extreme distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.