Abstract

A flexible extended Krylov subspace method (F-EKSM) is considered for numerical approximation of the action of a matrix function f(A) to a vector b, where the function f is of Markov type. F-EKSM has the same framework as the extended Krylov subspace method (EKSM), replacing the zero pole in EKSM with a properly chosen fixed nonzero pole. For symmetric positive definite matrices, the optimal fixed pole is derived for F-EKSM to achieve the lowest possible upper bound on the asymptotic convergence factor, which is lower than that of EKSM. The analysis is based on properties of Faber polynomials of A and (I−A/s)−1. For large and sparse matrices that can be handled efficiently by LU factorizations, numerical experiments show that F-EKSM and a variant of RKSM based on a small number of fixed poles outperform EKSM in both storage and runtime, and usually have advantages over adaptive RKSM in runtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call