Abstract
Infrared thermography (IRT) is a promising inspection technique, showing good defect detectability in a range of materials. To advance the IRT inspection technique, automated defect detection and analysis are of high interest. This study proposes an object detection algorithm based on Faster R–CNN with attention-based feature fusion network and flexible late fusion strategy for efficient extraction of defect features from an IRT image sequence. In order to train the deep learning-based algorithm, a large, diverse and representative virtual thermographic dataset for composite materials was constructed by an in-house developed parameterized 3D finite element simulator. The virtually trained deep learning framework is tested on experimental IRT datasets which were obtained on composite coupons having a range of artificial defect types as well as on stiffened aerospace composite panels with real (production) defects. The obtained test results indicate the high performance, generalization and reliability of the proposed deep learning framework for automated thermographic inspection of composite parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.