Abstract

The innovations of the present work include these items; (i) Design and preparation of three-dimensional flexible conductive polymeric nanocomposites (3D-FCPNCs) containing polypyrrole (PPy), V2O5 and TiO2 and modification of their surface with polygon-shape polyvinylpyrrolidone/CuO nanorods (PVP/CuO NRDs) and Fe2O3 NRDs using an hierarchical process based on isoelectric point (IEP), (ii) Application of the prepared surfaces as the flexible enzymeless creatinine sensors using four calibration curves (impedimetric, real capacitance (C′), imaginary capacitance (C″) and double layer capacitance (Cdl)) obtained from electrochemical impedance spectroscopy (EIS) technique. The best results have been obtained using PVP/CuO NRDs–Fe2O3 NRDs/TiO2–V2O5–PPy 3D-FCPNC hierarchical electrode with a wide range of the linear concentration range (10 nmol L−1 −1.3 mmol L−1). Although, determination of creatinine through extraction of parameters such as charge transfer resistance (Rct) and Cdl from measuring impedance at a wide range of frequencies provides useful information about the characteristics of the electrolyte/electrode interface, but measuring real and imaginary capacitances at a specific frequency instead of a wide frequency range can decrease the response time to lower than 1 min. Finally, the prepared hierarchical enzymeless sensors have been successfully used to estimate creatinine concentration in blood serum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call