Abstract

Laser displacement sensors (LDSs) are widely used in online measurement owing to their characteristics of non-contact, high measurement speed, etc. However, existing calibration methods for LDSs based on the traditional triangulation measurement model are time-consuming and tedious to operate. In this paper, a calibration method for LDSs based on a vision measurement model of the LDS is presented. According to the constraint relationships of the model parameters, the calibration is implemented by freely moving a stereo-target at least twice in the field of view of the LDS. Both simulation analyses and real experiments were conducted. Experimental results demonstrate that the calibration method achieves an accuracy of 0.044 mm within the measurement range of about 150 mm. Compared to traditional calibration methods, the proposed method has no special limitation on the relative position of the LDS and the target. The linearity approximation of the measurement model in the calibration is not needed, and thus the measurement range is not limited in the linearity range. It is easy and quick to implement the calibration for the LDS. The method can be applied in wider fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.