Abstract

Lignocellulosic biomass is a potential biotemplate for disposing the burden of the uncontrollable accumulation of environmental contaminants disrupting the hydrophytic ecosystems. Herein, an efficient solar-driven catalyst was prepared using a natural three-dimensional (3D) porous lignocellulose-based Juncus effusus (JE) fiber for wastewater treatment. Owing to the exquisite 3D microstructure and abundant hydroxyl groups, the two-dimensional lamellar graphitic carbon nitride/graphene oxide (g-C3N4/GO) nanocomposites were successfully synthesized and decorated on the carboxymethylated JE fiber via the electrostatic self-assembly method. The as-prepared g-C3N4/GO-JE (CNG-JE) photocatalyst exhibits excellent light absorption efficiency and a superior ability to accelerate photogenerated electron migration. The outstanding adsorption performance toward pollutants also contributes to the photodegradation property of CNG-JE, showing highly efficient degradation of C.I. Reactive Red 120 (99.8%), C.I. Acid Yellow 11 (99.8%), methylene blue (99.4%), Cr(VI) (98.8%), and tetracycline (87.2%). Most importantly, the lignocellulose-based CNG-JE fibers could be fabricated into a photocatalyst textile due to their flexible and weavable properties. In actual application, the CNG-JE textile can be reused for at least five cycles under the sun, demonstrating that the flexible CNG-JE textile is practical and recyclable. This study may provide a platform for constructing efficient, flexible, and weavable biomass-based porous materials for cost-effective and sustainable catalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.