Abstract

Recently, triboelectric energy nanogenerators (TENGs) have been paid the most attention by many researchers to convert mechanical energy into electrical energy. TENGs usually have a simple structure and a high output voltage. However, their high internal resistance results in low output power. In this work, we propose a flexible triboelectric energy nanogenerator with the double-side tribological layers of polydimethlysiloxane (PDMS) and PDMS/multiwall carbon nanotube (MWCNT). MWCNTs with different concentrations have been doped into PDMS to tune the internal resistance of triboelectric nanogenerator and optimize its output power. The dimension of the fabricated prototype is ~3.6 cm3. Three-axial force sensor is used to monitor the applied vertical forces on the device under vertical contact-separation working mode. The Prototype with 10 wt% MWCNT (Prototype I) produces higher output voltage than one with 2 wt% MWCNT (Prototype II) due to its higher dielectric parameter measured by LRC impedance analyzer. The triboelectric output voltages of Prototype I and Prototype II are 30 V and 25 V under the vertical force of 3.0 N, respectively. Their maximum triboelectric output powers are ~130 μW at 6 MΩ and ~120 μW at 8.6 MΩ under vertical forces, respectively.

Highlights

  • Triboelectric energy nanogenerators (TENGs), the low short-circuit current of the devices limits their applications

  • To enhance the output performance of TENGs, two or more energy conversion mechanisms nanogenerators are proposed as an effective way to compensate the disadvantage of TENGs36–38

  • PDMS/multi-wall carbon nanotubes (MWCNTs) is patterned with micro structures to increase the contacting area and improve electrical output of TENG

Read more

Summary

Introduction

TENGs, the low short-circuit current of the devices limits their applications. To enhance the output performance of TENGs, two or more energy conversion mechanisms nanogenerators are proposed as an effective way to compensate the disadvantage of TENGs36–38. We have developed a flexible and biocompatible triboelectric nanogenerator with simple fabrication process to convert mechanical energy into electricity, which can realize the tunable internal resistance. The multi-wall carbon nanotubes (MWCNTs) are doped into PDMS as one conductive triboelectric layer because PDMS has good biocompatibility[39,40,41,42]. MWCNT has good electrical conductivity and is deployed to tune the internal resistance by the doping concentration for matching the loading resistance. The biocompatible and electrode bonded PDMS thick film works as the other triboelectric layer. This proposed energy harvester has good flexibility, biocompatibility for the application of wearable devices

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.