Abstract

Variable-speed constant-frequency generating systems are used in wind power, hydroelectric power, aerospace, and naval power generation applications to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising a doubly excited induction machine or doubly excited brushless reluctance machine and PWM power converters with a DC link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network have also been minimized. In this manner, the system can function as both a highly-efficient power generator and a flexible reactive power compensator.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call