Abstract

High penetrations of renewable energy sources incorporated into transmission systems pose a substantial challenge to transmission expansion planning operations due to both the strong uncertainty of these sources and their high variability. However, most current robust transmission expansion planning studies focus exclusively on the issue of uncertainty, and neglect to optimize system flexibility in an effort to cope with the high variability of these sources. The present work addresses this critical issue by proposing a flexibility-oriented robust transmission expansion planning method developed according to the unit commitment characteristics of coal-fired and gas-fired generation units that fully considers the short-term flexibility requirements of electric power systems while maintaining high robustness to the uncertainties of RES outputs in long-term transmission expansion planning problems. The proposed complex model with unit commitment constraints containing massive binary variables is solved by first reducing the number of binary variables via the application of clustering techniques to identify generator units with similar generation properties, and then decreasing the complexity of the model further by relaxing the integer variables in the unit-clustered model. Finally, we develop generalized column-and-constraint generation algorithms that can solve the clustered model and the relaxed simplified model with greatly enhanced efficiency. Comparisons of the numerical results obtained by the proposed approach with existing state-of-the-art methods when applied to a simple Garver 6-node system and a realistically-sized power system demonstrate that the proposed method produces optimal RTEP solutions that account for both the uncertainty and variability of RES outputs. Moreover, the total cost of the proposed approach is 2.22×106$ less than that of the other state-of-the-art methods considered, which is of great significance in guiding practical transmission expansion planning applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.