Abstract

Various models for simulating catalytic converters are given in the literature. They deal with a wide range of different aspects. In addition to the type of catalytic converter (three-way catalytic converter, diesel oxidation catalytic converter, etc.), the aspect of complexity versus accuracy and speed can be tackled using different approaches. Moreover, the desired use has an influence on the model structure: optimization of catalyst design or prediction of emissions from real-world traffic situations or optimization of air–fuel ratio control? The model described here has been developed to predict emissions in arbitrary real-world driving patterns, both for hot driving as well as for cold-start situations. As these tests mainly last over 30 minutes (real time), the calculation effort should be small. The model should be easy to parameterize, as it should be applicable to vehicles from traffic. A model with a reduced set of chemical reactions has been developed with a particular focus on the thermal balance for cold-start cycles. Its outputs are the pollutant emissions at the tailpipe if the emissions, exhaust mass flow and temperature from the engine are given. It is applied to three-way catalytic converters. It models the chemical phenomena almost entirely based on oxygen storage and release reactions, which dominate highly transient situations. The model has been validated against a large database of measured driving cycles, carried out using different types of cars. It presents an acceptable degree of correlation between simulated and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.