Abstract

AbstractAn analytical solution of a two-dimensional bow and stern flow model based on a flat ship theory is presented for the first time. The flat ship theory is a counterpart to Michell's thin ship theory and leads to a mixed initial-boundary value problem, which is usually difficult to solve analytically. Starting from the transient problem, we shall first show that a steady state is attainable at the large time limit. Then the steady problem is solved in detail by means of the Wiener-Hopf technique and closed-form far-field results are obtained for an arbitrary hull shape. Apart from providing a better understanding of the underlying physics, the newly found analytical solution has shed some light on solving a longtime outstanding problem in the engineering practice of ship building, the optimisation of hull shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.