Abstract
Flame recognition is an important technique in firefighting, but existing image flame-detection methods are slow, low in accuracy, and cannot accurately identify small flame areas. Current detection technology struggles to satisfy the real-time detection requirements of firefighting drones at fire scenes. To improve this situation, we developed a YOLOv5-based real-time flame-detection algorithm. This algorithm can detect flames quickly and accurately. The main improvements are: (1) The embedded coordinate attention mechanism helps the model more precisely find and detect the target of interest. (2) We advanced the detection layer for small targets to enhance the model’s associated identification ability. (3) We introduced a novel loss function, α-IoU, and improved the accuracy of the regression results. (4) We combined the model with transfer learning to improve its accuracy. The experimental results indicate that the enhanced YOLOv5′s mAP can reach 96.6%, 5.4% higher than the original. The model needed 0.0177 s to identify a single image, demonstrating its efficiency. In summary, the enhanced YOLOv5 network model’s overall efficiency is superior to that of the original algorithm and existing mainstream identification approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.