Abstract
Matrix triangularization and orthogonalization are prerequisites to solving least square problems and find applications in a wide variety of communication systems and signal processing applications such as MIMO systems and matrix inversion. QR decomposition using modified Gram-Schmidt (MGS) orthogonalization is one of the numerically stable techniques used in this regard. This paper presents a fixed point implementation of QR decomposition based on MGS algorithm using a novel LUT based approach. The proposed architecture is based on log-domain arithmetic operations. The error performance of various fixed-point arithmetic operations has been discussed and optimum LUT sizes are presented based on simulation results for various fractional-precisions. The proposed architecture also paves way for an efficient parallel VLSI implementation of QR decomposition using MGS
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.