Abstract
We give a new proof of the Jantzen sum formula for integral representations of Chevalley schemes over Spec Z. This is done by applying the fixed point formula of Lefschetz type in Arakelov geometry to generalized flag varieties. Our proof involves the computation of the equivariant Ray-Singer torsion for all equivariant bundles over complex homogeneous spaces. Furthermore, we find several explicit formulae for the global height of any generalized flag variety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.