Abstract

We describe a fixed-point based approach to the theory of bipartite stable matchings. By this, we provide a common framework that links together seemingly distant results, like the stable marriage theorem of Gale and Shapley, the Mendelsohn-Dulmage theorem, the Kundu-Lawler theorem, Tarski's fixed-point theorem, the Cantor-Bernstein theorem, Pym's linking theorem, or the monochromatic path theorem of Sands et al. In this framework, we formulate a matroid-generalization of the stable marriage theorem and study the lattice structure of generalized stable matchings. Based on the theory of lattice polyhedra and blocking polyhedra, we extend results of Vande Vate and Rothblum on the bipartite stable matching polytope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.