Abstract

Picoeukaryotes dominate the phytoplankton of Lake Balaton—the largest shallow lake in Central Europe—in the winter period. We examined the annual dynamics of picoplankton abundance and composition in the lake in order to establish if the picoeukaryotes merely survive the harsher winter conditions or they are able to grow in the ice-covered lake when the entire phytoplankton is limited by low light and temperature. Lake Balaton has an annual temperature range of 1–29°C, and it is usually frozen between December and February for 30–60 days. In the spring-autumn period phycocyanin and phycoerythrin rich Cyanobacteria are the dominant picoplankters, and picoeukaryotes are negligible. Our five-year study shows the presence of three types of picophytoplankton assemblages in Lake Balaton: (1) Phycoerythrin-rich Cyanobacteria—the dominant summer picoplankters in the mesotrophic lake area; (2) Phycocyanin-rich Cyanobacteria—the most abundant summer picoplankters in the eutrophic lake area and; (3) Picoeukaryotes—the dominant winter picoplankters in the whole lake. The observed winter abundance of picoeukaryotes was high (up to 3 × 105 cells ml−1), their highest biomass (520 μg l−1) exceeded the maximum summer biomass of picocyanobacteria (500 μg l−1). Our results indicate that the winter predominance of picoeukaryotes is a regular phenomenon in Lake Balaton, irrespective of the absence or presence of the ice cover. Picoeukaryotes are able to grow at as low as 1–2°C water temperature, while the total phytoplankton biomass show the lowest annual values in the winter period. In agreement with earlier findings, the contribution of picocyanobacteria to the total phytoplankton biomass in Lake Balaton is inversely related to the total phytoplankton biomass, whereas no such relationship was observable in the case of picoeukaryotes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call