Abstract

This paper presents a five-fingered underactuated prosthetic hand controlled by surface electromyographic (EMG) signals. The prosthetic hand control part is based on an EMG motion pattern classifier which combines variable learning rate (VLR) based neural network with parametric autoregressive (AR) model and wavelet transform. This motion pattern classifier can successfully identify flexion and extension of the thumb, the index finger and the middle finger, by measuring the surface EMG signals through three electrodes mounted on the flexor digitorum profundus, flexor pollicis longus and extensor digitorum. Furthermore, via continuously controlling single finger's motion, the five-fingered underactuated prosthetic hand can achieve more prehensile postures such as power grasp, centralized grip, fingertip grasp, cylindrical grasp, etc. The experimental results show that the classifier has a great potential application to the control of bionic man-machine systems because of its fast learning speed, high recognition capability

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.