Abstract
In the present paper, we consider a five-dimensional Riemannian manifold with an irreducible SO(3)-structure as an example of an abstract statistical manifold. We prove that if a five-dimensional Riemannian manifold with an irreducible SO(3)-structure is a statistical manifold of constant curvature, then the metric of the Riemannian manifold is an Einstein metric. In addition, we show that a five-dimensional Euclidean sphere with an irreducible SO(3)-structure cannot be a conjugate symmetric statistical manifold. Finally, we show some results for a five-dimensional Riemannian manifold with a nearly integrable SO(3)-structure. For example, we prove that the structure tensor of a nearly integrable SO(3)-structure on a five-dimensional Riemannian manifold is a harmonic symmetric tensor and it defines the first integral of third order of the equations of geodesics. Moreover, we consider some topological properties of five-dimensional compact and conformally flat Riemannian manifolds with irreducible SO(3)-structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annals of Global Analysis and Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.