Abstract
AbstractThe objective of this paper is to construct and analyze a fitted operator finite difference method (FOFDM) for the family of time‐dependent singularly perturbed parabolic convection–diffusion problems. The solution to the problems we consider exhibits an interior layer due to the presence of a turning point. We first establish sharp bounds on the solution and its derivatives. Then, we discretize the time variable using the classical Euler method. This results in a system of singularly perturbed interior layer two‐point boundary value problems. We propose a FOFDM to solve the system above. Through a rigorous error analysis, we show that the scheme is uniformly convergent of order one with respect to both time and space variables. Moreover, we apply Richardson extrapolation to enhance the accuracy and the order of convergence of the proposed scheme. Numerical investigations are carried out to demonstrate the efficacy and robustness of the scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.