Abstract
Heart rate can be considered as an indicator of the exercise intensity in people's daily physical activities. Five heart rate zone theory is commonly adopted by individuals and professional athletes during their exercises and training. These heart rate zones are based upon percentages of people's maximal heart rate, which indicate different exercise intensities. The aim of paper is to propose an optimization training system based on dynamic heart rate prediction, which can predict people's heart rate under three different types of exercises: walking, running and rope jumping. The system can help people optimize their exercise by advising them to adjust the speed or workload to reach their predetermined training intensity under different activities. Four Long Short-Term Memory (LSTM) neural networks are deployed, one for human activity recognition (HAR) and three for heart rate prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.