Abstract

Cellular morphology affects many aspects of cellular and organismal physiology. This makes it challenging to dissect the evolutionary basis for specific morphologies since various cellular functions may exert competing selective pressures on this trait, and the influence of these pressures will depend on the specific mechanisms of morphogenesis. In this light, we combined experiment and theory to investigate the complex basis for morphological diversity among tip-growing cells from across the tree of life. We discovered that an instability in the widespread mechanism of "inflationary" tip growth leads directly to a bifurcation in the common fitness landscape of tip-growing cells, which imposes a strict global constraint on their morphologies. This result rationalizes the morphology of an enormous diversity of important fungal, plant, protistan, and bacterial systems. More broadly, our study elucidates the principle that strong evolutionary constraints on complex traits, like biological form, may emerge from emergent instabilities within developmental systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call