Abstract

Fission gas release in thoria-urania fuel has been investigated by creating a specially modified FRAPCON-3 code. Because of the reduced buildup of 239Pu and a flatter distribution of 233U, the new model THUPS (Thoria-Urania Power Shape) was developed to calculate the radial power distribution, including the effects of both plutonium and 233U. Additionally, a new porosity model for the rim region was introduced at high burnup. The mechanisms of fission gas release in ThO2-UO2 fuel are expected to be essentially similar to those of UO2 fuel; therefore, the general formulations of the existing fission gas release models in FRAPCON-3 were retained. However, the gas diffusion coefficient was adjusted to a lower level to account for the smaller observed release fraction in the thoria-based fuel. To model the accelerated fission gas release at high burnup properly, a new athermal fission gas release model was introduced. The modified version of FRAPCON-3 was calibrated using the measured fission gas release data from the light water breeder reactor. Using the new model to calculate the gas release in typical pressurized water reactor hot pins gives data that indicate that the ThO2-UO2 fuel will have considerably lower fission gas release above a burnup of 50 MWd/kg HM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.