Abstract
Fisheries face challenges in improving efficiency and reducing their emission footprint and operating costs. Decision support systems offer an opportunity to tackle such challenges. This study focuses on the dynamic fishing routing problem (DFRP) of a tuna purse seiner from a tactical and operational routing point of view. The tactical routing problem is formalized as the dynamic k-travelling salesperson problem with moving targets and time windows, whereas the operational problem is formulated as the time-dependent shortest path problem. The algorithm proposed to solve this problem, called GA-TDA*, couples a genetic algorithm (GA), which uses problem-dependent operators, with a time-dependent A* algorithm. Using real data from a fishing company, the designed GA crossovers were evaluated along with the trade-off between the combination of the proposed objectives: fuel consumption and probability of high catches. The DFRP was also solved as a real dynamic problem with route updates every time a dFAD was fished. The results obtained by this approach were compared with historical fishing trips, where a potential saving in fuel consumption and time at sea of around 57% and 33%, respectively were shown. The dynamic GA-TDA* shows that a better selection of fishing grounds together with considerations about weather conditions can help industry to mitigate and adapt to climate change while decreasing one of their main operational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.