Abstract
Constructing an architectural host is demonstrated to be an effective strategy for long-life lithium metal anodes (LMAs). Herein, an integrated 3D host for stable and ultrahigh-rate LMAs is developed by a binary highly conductive network of 2D reduced graphene oxide (rGO) and 1D carbon nanofibers (CNF) anchored with 0D ultrasmall MgZnO nanoparticles (MgZnO/CNF-rGO). A facile net-fishing strategy is proposed to combine the rGO nanosheets with free-standing CNF matrix as interconnected paths for fast electron transport. Notably, serving as Li nucleation sites, the superlithiophilic MgZnO nanoparticles are uniformly distributed and tightly contacted with the conductive matrix without agglomeration due to the rGO confinement. Such a delicate nanoscale combination guarantees the effective transportation and uniform deposition of Li-ions in the inner surface of the host. The symmetric cell of Li@MgZnO/CNF-rGO exhibits a long lifespan above 1450 cycles under an ultrahigh current density of 50mAcm-2 with an areal capacity of 1.0mAhcm-2 . Impressively, it also delivers a high reversible capacity of 10mAhcm-2 at 50mAcm-2 . This work offers an avenue to promise the prospect for practical LMAs working under high rates and capacities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.