Abstract

Intraspecific variation in movement patterns are well established for many species, but poorly appreciated in fisheries management. In this study we dart-tagged snapper ( Pagrus auratus ), an important fishery species, across different areas and habitats in the Hauraki Gulf, New Zealand. Tag returns were used to quantify movement behaviour and extraction rates using a maximum likelihood model that corrected for spatial variability in population size and fishing effort. Residency was high (~90%) in two strata and lower (75%) in the remaining stratum. The stratum with the highest residency also appeared to experience the highest extraction rate (likely due to a lower population size). These results confirm the existence of differences in movement behaviour within the snapper population, suggesting that localized areas may become depleted regardless of the status of the overall stock. This has consequences for the scale of fisheries management and the size of marine reserves implemented in different regions. Understanding why variation in movement behaviour exists (i.e., genetic vs. environmental) is the next step in addressing the influence of animal behaviour on fisheries management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call