Abstract

Monocyte adhesion contributes to perfusion abnormalities, tissue damage, and activation of the coagulation system seen during trauma, shock, or overwhelming inflammation. This study was performed to determine whether an intravenous fish oil emulsion used for parenteral nutrition attenuates monocyte-endothelial interactions under flow and reduces procoagulant activity, measured as tissue factor (TF) expression on adherent monocytes in vitro. Endothelial cell monolayers were incubated with either an intravenous fish oil emulsion or a conventional omega-6 lipid emulsion at 0.05 to 1 mg/ml for 24 h. Six hours following activation with TNFalpha (25 ng/ml), expression of endothelial cell adhesion molecules was measured by flow cytometry. Adhesion of isolated monocytes to pretreated endothelium was examined in a parallel plate flow chamber at a shear stress of 1.5 dynes/cm2. Following perfusion, the cells were cocultured for an additional 4 h and TF expression on monocytes was determined by flow cytometry. In contrast to omega-6 lipids, fish oil down-regulated E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in a dose-dependent manner. P-selectin, however, remained unchanged. In addition, firm adhesion was reduced to 54%, whereas rolling interactions remained unchanged. Fish oil exhibited no effect on the TF expression on cocultured monocytes. We conclude that intravenous fish oil emulsions reduce both endothelial cell adhesion molecule expression and monocyte adhesion. However, under postcapillary flow conditions, rolling interactions via P-selectin remain unaltered. The functional importance of this effect is illustrated by the corresponding upregulation of TF in response to residual monocyte-endothelial interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.