Abstract
We continue the study initiated by H. S. Shapiro on Fischer decompositions of entire functions, showing that such decomposition exist in a weak sense (we do not prove uniqueness) under hypotheses regarding the order of the entire function f to be expressed as f=P·q+r\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f= P\\cdot q+r$$\\end{document}, the polynomial P, and bounds on the apolar norm of homogeneous polynomials of degree m. These bounds, previously used by Khavinson and Shapiro, and by Ebenfelt and Shapiro, can be interpreted as a quantitative, asymptotic strengthening of Bombieri’s inequality. In the special case where both the dimension of the space and the degree of P are two, we characterize for which polynomials P such bounds hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.