Abstract

In this study, the coefficients of diffusion of oxygen in nickel-based alloys are determined by atomistically modeling the oxygen diffusion process using a vacancy-mediated diffusion model. Density functional theory is used to calculate the energy of the system. The activation barrier energy for the diffusion of atomic oxygen in nickel is quantified by determining the most favorable path, i.e., the minimum-energy path, for diffusion. Phonon analysis is performed using the direct force-constant method. The calculated pre-exponential factor for the lattice diffusion of oxygen in nickel is 5.45×10−7m2/s and the activation energy is 158.65kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.