Abstract
In this paper a univariate discrete distribution, denoted by GIT, is proposed as a generalization of the shifted inverse trinomial distribution, and is formulated as a first-passage time distribution of a modified random walk on the half-plane with five transition probabilities. In contrast, the inverse trinomial arises as a random walk on the real line with three transition probabilities. The probability mass function (pmf) is expressible in terms of the Gauss hypergeometric function and this offers computational advantage due to its recurrence formula. The descending factorial moment is also obtained. The GIT contains twenty-two possible distributions in total. Special cases include the binomial, negative binomial, shifted negative binomial, shifted inverse binomial or, equivalently, lost-games, and shifted inverse trinomial distributions. A subclass GIT3,1 is a particular member of Kemp’s class of convolution of pseudo-binomial variables and its properties such as reproductivity, formulation, pmf, moments, index of dispersion, and approximations are studied in detail. Compound or generalized (stopped sum) distributions provide inflated models. The inflated GIT3,1 extends Minkova’s inflated-parameter binomial and negative binomial. A bivariate model which has the GIT as a marginal distribution is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.