Abstract

Abstract. Earthquake size can be described with different magnitudes for different purposes. For example, local magnitude ML is usually adopted to compile an earthquake catalog, and moment magnitude Mw is often prescribed by a ground motion model. Understandably, when inconsistent units are encountered in an earthquake analysis, magnitude conversion needs to be performed beforehand. However, the conversion is not expected at full certainty owing to the model error of empirical relationships. This paper introduces a novel first-order second-moment (FOSM) calculation to estimate the annual rate of earthquake motion (or seismic hazard) on a probabilistic basis, including the consideration of the uncertain magnitude conversion and three other sources of earthquake uncertainties. In addition to the methodology, this novel FOSM application to engineering seismology is demonstrated in this paper with a case study. With a local ground motion model, magnitude conversion relationship and earthquake catalog, the analysis shows that the best-estimate annual rate of peak ground acceleration (PGA) greater than 0.18 g (induced by earthquakes) is 0.002 per year at a site in Taipei, given the uncertainties of magnitude conversion, earthquake size, earthquake location, and motion attenuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.