Abstract
We show that the dynamics responsible for the variation of the Yukawa couplings of the Standard Model fermions generically leads to a very strong first-order electroweak phase transition, assuming that the Yukawa couplings are large and of order 1 before the electroweak phase transition and reach their present value afterwards. There are good motivations to consider that the flavour structure could emerge during electroweak symmetry breaking, for example if the Froggatt–Nielsen field dynamics were linked to the Higgs field. In this paper, we do not need to assume any particular theory of flavour and show in a model-independent way how the nature of the electroweak phase transition is completely changed when the Standard Model Yukawas vary at the same time as the Higgs is acquiring its vacuum expectation value. The thermal contribution of the fermions creates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly tied to flavour models.
Highlights
While the Higgs sector has started to be well measured at the LHC, the nature of the electroweak phase transition (EWPT) still remains very poorly constrained
We show that the dynamics responsible for the variation of the Yukawa couplings of the Standard Model fermions generically leads to a very strong first-order electroweak phase transition, assuming that the Yukawa couplings are large and of order 1 before the electroweak phase transition and reach their present value afterwards
There are good motivations to consider that the flavour structure could emerge during electroweak symmetry breaking, for example if the Froggatt-Nielsen field dynamics were linked to the Higgs field
Summary
We show that the dynamics responsible for the variation of the Yukawa couplings of the Standard Model fermions generically leads to a very strong first-order electroweak phase transition, assuming that the Yukawa couplings are large and of order 1 before the electroweak phase transition and reach their present value afterwards. The thermal contribution of the fermions creates a barrier between the symmetric and broken phase minima of the effective potential, leading to a first-order phase transition. This offers new routes for generating the baryon asymmetry at the electroweak scale, strongly tied to flavour models
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.